ACH Auroral Substorms and Ionospheric Outflow

Aislyn Bell Mentor: Lynn Kistler

MACH CENTER DO HABITABLE WORLDS REQUIRE MAGNETIC FIELD

Introduction

Question: How does ionospheric outflow change during auroral substorms?

- Auroral substorms: magnetic energy accumulated in the magnetotail is released through reconnection and driven into the ionosphere
- Energy drives ion outflow, so we expect it to increase during substorms
- Compare phases of the substorm and methods of substorm identification

Identifying substorm onsets

- Identify the time of the initial auroral brightening using images
 - Wilson and Liou lists
- Look at the average changes in data from ground based magnetometers
 - SuperMAG lists: Forsyth, Ohtani, Newell
- Dispersionless particle injections at geosynchronous orbit
 - Not used in this study

Polar UVI image of a substorm on 1997/01/26, with an onset at 18:18:00

Identifying substorm onsets

Forsyth et al., (2015)

Polar UVI image of a substorm on 1997/01/26, with an onset at 18:18:00

Methods

- Compile and compare lists of substorms that use both methods from 1996/12/01-1997/02/28
- Validate methods against Wilson et al. (2004)
- Perform a superposed epoch analysis on each list using TEAMS data from FAST Spacecraft
 - Lining up similar events at a key time, and taking the average
- Slowly expand time range
 Slowly expand time range
 3.0×10²⁴
 2.5×10²⁴
 2.0×10²⁴
 1.5×10²⁴
 5.0×10²⁶
 Liou list

Results

- Compared Wilson substorm list to 4 other substorm lists in SuperMAG
 - \circ Looked for matches within 5 minutes
 - Best match was 66% of onsets with Liou (2010), which is still poor since both lists used the same data
 - Best match with magnetometer data was only 20%
- Looked through Polar UVI images to discern which imager based list was more reliable
 - \circ ~ Did not find a pattern as to why some substorms were rejected from either list

1	In order of bes	t to worst matches	to Gordon-Wilson Dataset (127 substorms using Polar UVI Images):	
2	Method:			
3	Polar UVI Images	Liou (2010)	84 matches	
4	Ground Magnetometers	Forsyth et al. (2015)	25 matches	
5	Ground Magnetometers	Ohtani and Gjerloev (2020)	17 matches	
6	Ground Magnetometers	Newell and Gjerloev (2011)	17 matches	
7				
8	Frey et al. (2004 and 2006) did not go back that far			
		Descrit	from Lion and Summer MAC list commercian	
	RESULTS ITOIN LIOU AND SUPERMAG IIST COMPARISON			

Comparing Polar UVI Images

Substorm on the Wilson list but not Liou

Substorm on the Liou list but not Wilson

Average ion outflow plots for Wilson small substorms

Average H+ Outflow from 1996/12/01–1997/02/28

9

Average O+ Outflow from 1996/12/01-1997/02/28

10

3 month conclusions

- Increased flux at onset
- Data is too sparse to calculate fluence for some lists

Expanding the time range

- 2 year time period
- Filter out storm time substorms using DST
- Divide into large and small substorms using Kp=2 as the cutoff

From stce.be

Average H+ Outflow from 1996/12/01-1998/11/30

Liou (large)

Newell (large)

Average O+ Outflow from 1996/12/01-1998/11/30

Liou (large)

Newell (large)

Ohtani (large)

-30 min

Preliminary Fluence Plots for 1996/12/01-1998/11/30

Future work

- Run superposed epoch analysis for non-storm time substorms for entire FAST mission
- Evaluate the role of solar cycle, season, and strength of solar wind-magnetosphere interactions in ion outflow during substorms

Summary

- Determining auroral onset is subjective, so different lists have different onsets for the same time period
 - Magnetometer methods do not agree with imaging methods
- Smaller timescales don't have enough data, so a longer time period is necessary for the analysis
- Ion outflow appears to increase sharply at substorm onset, isolated substorm lists show this trend better

Acknowledgments: Lynn Kistler, Niloufar Nowrouzi, Chris Mouikis, Eric Lund